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Abstract
A hybrid approach for large-eddy simulations (LES) of turbulent combustion with the
One-Dimensional Turbulence (ODT) model is developed. The need for a structure-based
approach can address some of the key challenges arising in the prediction of non-linear
physics on the subgrid scale. The implementation involves hybrid solutions of 3D LES
with ID solutions based on the ODT, with ODT elements embedded within the LES
computational domain. The solutions require the coupling of LES and ODT as well as the
coupling of the different ODT "processes." The proposed methodology represents a
fundamentally new framework to address subgrid scale physics where statistical
information cannot be represented in LES-resolved physics or cannot be assumed a
priori. Numerical implementation issues are addressed, including a novel implementation
of filtered advection for scalars and momentum. Validation studies based on the non-
homogeneous autoignition show that the proposed framework and specific
implementations yield excellent predictions of the physics.

I. Introduction

Momentum transport, scalar mixing, and combustion in turbulent flows are governed by
multiscale processes. The multiscale nature of these flows has given rise to an
increasingly popular simulation approach, large-eddy simulations (LES). The solution
approach in LES is based on coarse-grained simulations, where physical phenomena are
resolved down to a prescribed cut-off length scale, and the contribution of unresolved
subgrid scales is modeled. Inherent in the original LES formulation is the assumption that

the physics under consideration, which is associated with momentum and scalar
transport, is governed by large-scale motion, while small scales have universal characters.
Moreover, the contributions of small scales to the resolved scalar and vector fields are
assumed to be primarily dissipative.

In recent years, there has been increased interest in applying LES to turbulent mixing and
combustion flows; however, important statistics related to these flows may be governed
by subgrid scale processes due to the strong coupling between transport and chemistry.
Traditional approaches to evaluate the resolved turbulent transport for momentum and
scalars are based on gradient diffusion approximations for the subgrid stresses and the
Reynolds fluxes (e.g. the Smagorinsky model, Smagorinsky, 1963 and the dynamic
model, Germano et al., 1991); and similar trends have been adopted for reacting flows



(e.g. Cook & Riley, 1994; Pierce & Moin, 1998). Serious limitations of gradient diffusion
models have been identified for turbulent mixing and combustion problems, including the
presence of different scaling rules for the scalar spectra (Warhaft, 2001) and scalar
counter-gradient diffusion (Bray et al., 1985; Poinsot et al., 1996; Veynante et al., 1997;
Caldeira-Pires & Heitor, 2001) in flames. Moreover, the evaluation of non-linear source
terms, due to reaction, presents additional challenges. Statistical approaches have been
developed to address closure for the source term; however, such approaches are
inherently limited by the transient nature of the combustion problem, the importance of
statistical outliers in determining combustion behavior, and transitions in combustion
modes.

The principal challenges for the LES of turbulent mixing and combustion are the
representation of transport, chemistry and the coupling of these two processes over a
wide range of time and length scales. Two examples of such challenges are illustrated
below:

(1) The structure and dynamics of turbulent sooting flames and fires are dependent on
radiation from these flames. This radiation is, in turn, dependent on where soot
resides within these flames. Strong, non-uniform temperature variations within the
flames over distances of the order of tens to hundreds of microns are modulated by
curvature and strain effects due to turbulence. A statistical representation may not
capture the flame structure-dependent phenomena easily.

(2) During the autoignition of fuel-oxidizer mixtures, autoignition occurs in discrete sites
or kemels of which only a fraction evolves into ignition fronts. High and localized
dissipation rates result in failed autoignition at the remaining sites. Statistics that
represent mean dissipation rates on scalar fluctuations may not be able to capture the
high rates of dissipation contribution.

The direct simulation of subgrid scale processes may provide the only robust approaches
for representing them accurately; however, such approaches may appear to conflict with
the basic underlying LES paradigm: the solution for only a select range of length and
time scales. The answer lies in the fact that we are primarily and ultimately interested in
statistics and not necessarily the detail of the flow and scalar fields, such as the ones
generated during a direct numerical simulation (DNS); therefore, a reasonable
representation of these statistics, albeit at a reduced dimension or parameter space, may
be sufficient to address the closure problem.

In combustion flows, many structure-based models have been proposed to address
primarily the closure for the non-linear reaction source terms in the scalar equations. The
classical flamelet approach and later refinements (Peters, 2000) represent examples of
representation of the complex turbulent flame structure through surrogate models of
simplified laminar flames. Of relevance to our present work are two relatively more
recent models, the filtered-density function (FDF) approach (Pope, 1993; Gao & O'Brien,
1993; Collucci et al., 1998; Jaberi et al., 1996, 1999; Giquel & Givi, 2000; Zhou &
Pereira, 2000; El Sheikhi et aL, 2003) and the LES-LEM approach by Menon and co-
workers and McMurtry & co-workers (McMurtry et al., 1992; Menon et aL, 1993;
Calhoon & Menon, 1996, 1997; Smith & Menon, 1997, 1998; Sankaran & Menon, 2000;
Chakravarthy & Menon, 2000,2001).



The FDF approach evolves from the transported probability density function (PDF)
approach that has been successfully implemented in Reynolds-Averaged Navier-Stokes
(RANS) simulations (Pope, 1986). As in PDF methods, FDF requires the transport of
representative particles. Chemistry is implemented in integrated in closed form; while,
mixing is implemented using a mixing model. Transport of these particles is implemented
using the LES resolved velocity field, while both velocity fluctuations and molecular
diffusive are represented using stochastic processes.

The Linear-Eddy Model (LEM), which was developed originally by Kerstein (1989,
1990, 1991, and 1992) is a one-dimensional mixing model that incorporates molecular
processes (with structure) in a deterministic way through solutions of unsteady reaction-
diffusion equations and represents turbulent transport stochastically through stirring
events. A stirring event on a selected eddy is implemented through a 'triplet-map'. Triplet
maps are designed to emulate the compressive-strain and rotational-folding effects of
turbulent eddies. The rates and locations of these stirring events are determined by an
assumed shape of the kinetic energy spectrum.

The two modeling approaches, FDF and LES-LEM, offer important advantages over
traditional approaches, as they potentially can address more general combustion problems
involving different burning modes (e.g. premixed vs. nonpremixed) and transitions in the
burning modes, burning regime and dominant combustion chemistry. These advantages
also come with potential limitations in computational cost. A more recent refinement of
the LEM approach is the One-Dimensional Turbulence (ODT) model (Kerstein 1999a, b;
Kerstein et al., 2001). As stated by Kerstein et al. (2001) 'One-Dimensional Turbulence
is a stochastic simulation method representing the time evolution of the velocity profile
along a notional line of sight through a turbulent flow.'

LEM and ODT diverge in the manner the eddy size and rate distributions are
implemented. In LEM, the frequency and the eddy size distribution of the stirring events
are prescribed by a predefined kinetic energy spectrum (Kerstein, 1989). In ODT, one or
more components of the velocity vector are transported. Therefore, the ODT model
enables a mechanism for 'driving turbulence'. The frequency and the eddy size
distribution are determined by the local flow field. In contrast with LEM, a mixing
model, ODT is a self-contained turbulence model. The LEM and ODT models may be
implemented as stand-alone models for turbulent flows where a dominant direction of the
flow may be identified a priori. Such flows may constitute building blocks for more
complex flows, and therefore provide useful validation of the ODT and LEM approaches.
ODT has been implemented as a stand-alone model for homogeneous turbulent non-
reacting (Kerstein, 1999a, b; Dreeben and Kerstein, 1998; Kerstein & Dreeben, 2000;
Wunsch & Kerstein, 2001; Kerstein et aL, 2002; Ashurst et al., 2003) and reacting flows
(Echekki et al., 2001, 2004; Hewson & Kerstein, 2001, 2002; Hewson et al., 2002; Zhang
& Echekki, 2005); however, more complex flows require the use of ODT and LEM
within the framework of a three-dimensional flow solution approach such as LES.

Progress in implementing ODT within the context of LES for momentum transport has
been achieved in the recent studies by Schmidt et al. (2003) and McDermott et al. (2005).
Schmidt et al. (2003) implemented ODT within the context of a hybrid simulation with
LES to model near-wall momentum transport, such that ODT solutions are extended from
the bulk flow to the wall. The hybrid approach reproduces very well velocity profiles



normal to the wall, which are consistent with scaling rules in the inner region. The
scheme by Schmidt et al. (2003) is also based on a two-way coupling between LES and
ODT. McDermott et al. (2005) an algebraic stress model, denoted as the ensemble mean
closure or EMC model, for closure of the subgrid stresses in LES based on the mappings
and time scale physics used in ODT.

The objective of the present study is to develop a LES-ODT implementation for turbulent
combustion. As outlined above, the need for a structure-based approach can address some
of the key challenges arising in the prediction of non-linear physics on the subgrid scale.
The implementation involves hybrid solutions of 3D LES with 1D ODT, with ODT
domains or elements embedded within the LES computational domain. The solutions
require the coupling of LES and ODT, the coupling of ODT elements, as well as the
coupling of ODT "processes," which are implemented as combination of deterministic
and stochastic implementations. A rigorous discussion of the numerical aspects of this
coupling is beyond the scope of the present report. Such discussion, although important,
warrants a separate manuscript. Instead, the present study focuses primarily on
motivating the model development, a presentation of the numerical implementations, a
discussion of key associated issues, and a validation of the LES-ODT model.

In the following sections, the basic elements of the LES-ODT model are presented (Sec.
II) and key aspects of the numerical implementation are discussed (Sec. III). A numerical
validation of the LES-ODT model based on the problem of autoignition in non-
homogeneous mixtures is presented (Sec. IV), followed by a discussion of the results
(Sec. V). Key observations on the performance of the LES-ODT model are reiterated in
Sec. VI.

II. THE LES-ODT STRATEGY

A. Outline of the Proposed Strategy and Key Elements

Although the present validation effort has a limited scope, including a one-way coupling
between LES and ODT, we will first introduce the LES-ODT model within the context of
a fully-coupled hybrid scheme. The proposed LES-ODT formulation is based on two
simulations that are implemented in the same volume (the computational domain). The
first is a coarse-grained simulation based on the filtered transport equations for
momentum and scalars (e.g. energy, species, and passive scalars). The second is based on
fine-grained simulations implemented on an ensemble of ODT domains or elements that
are embedded in the LES domain. These ODT elements are distributed in the
computational domain in a similar manner to produce adequate statistics for filtered
moments of scalars and derived quantities. In many respects, the LES-ODT approach is
similar to the FDF approach. Both couple deterministic coarse-grained solutions with
fine-grained solutions on representative elements in the computational domain. The
added dimension provides mechanisms for estimating and coupling molecular process
(reaction and diffusion) with turbulent transport, at least along the ID domains of ODT.
Moreover, this added dimension also enables the implementation of physical boundary
conditions, such as walls. The distribution of the ODT elements is dictated by statistical
requirements to capture needed closure terms; while, their orientation can be random or
aligned to capture physical behavior more accurately.



B. Model Formulation

The governing equations along the ODT elements are derived from the same equations
governing the instantaneous vector and scalar fields of interest, and the same equations
from which the filtered governing equations are derived; however, the resulting reduced
equations on ODT elements will feature resolved contributions along the ODT domains,
deterministic contributions from the filtered LES solution, and stochastic contributions
from LES-unresolved transport terms. The formulation below describes a set of fixed
ODT elements. We shall denote this formulation as the Eulerian LES-ODT
formulation. We consider 3D unsteady fields for the three components of momentum
and a set of scalars. At this stage of the formulation there are no assumptions about the
molecular transport model, the chemical kinetics or the model for heat release. The
scalars may correspond to measures of energy (e.g. temperature or internal energy),
mixture composition (e.g. species mass fractions), and progress in chemistry, mixing, or
phase change (e.g. reaction progress variable, mixture fraction). We present the scalar
governing equations in terms of temperature and species mass fractions. The model
involves the 3D solution of LES-filtered transport equations for total mass, momentum,
and scalars and an equivalent set of one-dimensional ODT transport equations.

1. The Filtered Equations

The LES governing equations are obtained by performing the filtering operation on the
transport equations for scalars and momentum. These equations serve as the basis of
LES-ODT model formulation and can be used for variable density as well as constant
density flows. The equations are given as

Continuity:

EP _+ - = 0 (1)agt aXi

Conservation of Momentum:

-- P - i(2)at axi taij axj

Conservation of Energy:

at 1p 8at IN8( i 7
Xkrok + 1[P l- +(3

at cP at Ck k=1 cp a j (3)

Conservation of Mass Fractions
pC•,:d,+•P u'i• -u•j)+-•i (4)

P at o jLaxi U axi +PigxJ

In the above equations, the dependent variables, p, ui, T and Yk, represent the mass density, the ith
component of the velocity vector, the mixture temperature, and the kth species mass fraction,
respectively. Other symbols in the governing equations include the pressure, P, the heat flux in



the ith direction, 4q", the mixture heat capacity, cp, the kth species total enthalpy, hk, and the its

corresponding production rate, d)k. In Eq. (2), the viscous stress tensor, 1*,, is expressed in terms

of the dynamic viscosity, A, and the strain rate tensor, So., as follows:

i auk

2p S, where S, =-2 ,x j 1 -_axk (5)
2aax, 3 axk

In Eq. (4), Jkj is the diffusive flux of species k in directionj, Jki" The symbol '-' corresponds

to the implementation of a spatial filter function, G, such that a filtered quantity, 0, defined at a
spatial position, x, and time, t, is expressed as: -(x, t) = JJJf(x', t)- G(x - x', A) dx'. The symbol

A

'-' in Eqs. (1)-(4) corresponds to a Favre-averaged filtering of a given quantity, 0 += 0+%

where 6 and 0* represent the resolved and unresolved contributions to the variable 0 in the LES

solution, respectively. The terms (Wji. -ui) in Eq. (2) are the subgrid stresses. Terms

T -u' ) in Eq. (3) and ( u, Yk in Eq. (4) are subgrid fluxes for temperature and
species, respectively. Those subgrid stresses and fluxes need to be modeled using a subgrid
closure model.

2. The ODT Governing Equations

On each ODT element, a set of momentum and scalar equations is derived. These
equations feature both resolved contributions on the ID ODT domains and unresolved
contributions. These equations also are represented in terms of a hybrid scheme with
deterministic and stochastic contributions. The coordinate system on which the governing
equations are based is Cartesian with one component along the ODT domain, q, and two
additional orthogonal components, x, and x2. In the simplest layout of the ODT domain
topology, a Cartesian lattice of ODT elements may be adopted as shown in Fig. 1.

A principal element of the coupling of a coarse-grained simulation approach (LES) with a
fine-grained approach is the representation of turbulent transport for momentum and
scalars below the LES resolution. Different interpretations of resolution may evolve from
the use of implicit filtering (Schumann) or explicit filtering of the LES governing
equations (1)-(4). In principle, both approaches can be implemented with the context of
the LES-ODT approach. To represent LES-unresolved transport, we decompose the
velocity field into 'resolved' and 'unresolved' components:

Ui =Wu + *. (6)

Here, we assume that while the LES-solution for the velocity vector is evaluated
numerically on a discrete coarse-grid, it is possible to interpolate it onto a finer grid,
while maintaining a reasonable separation between LES-resolved and LES-unresolved
scales. The second component of the velocity decomposition, u, ,represents the
unresolved component in LES, which is represented by the turbulent stirring events in
ODT. The governing equations on each ODT element of momentum, temperature, and
species mass fractions are:



Conservation of Momentum

a1 &u, 1 (iri+,2 1) (7)

Conservation of Energy
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Figure 1. Schematic layout of the ODT elements in x-y plane based on an ODT lattice
configuration.

In the above equations, the ODT governing equations feature contributions that are
resolved on the ODT domain and other contributions that require gradients along the
normal components to the ODT domain. The resolved contributions include: (1)
molecular transport with gradients along the ID domain, (2) chemical source terms, and
(3) the stochastic contributions, flu, 5 T, and Q k. The stochastic contributions

represent 3D transport events, including stirring, pressure scrambling, and contributions
from fluctuating terms in the different variables. The stochastic contributions are
implemented as instantaneous stirring events through triplet maps (Kerstein 1999a).

The 'triplet map' is illustrated in Fig. 2. Given a selected eddy size defined by its length,
1, and its starting point, yo, on the 1D domain the triplet map converts an initial field of a

dependent variable (e.g. scalar composition) V(y)to q,(m(y)) where:
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The triplet map also translates into a displacement of the dependent variable q((y)
(McDermott et al., 2005):

1P(y;yo,l): = [q,(mQr))- e(rq)]dq. (11)

The resulting flux rate corresponding to a discrete set of stirring events at a given position,
y, over a period At, is expressed as:

Fq,(y)= 1EpL(ym;yorlm) (12)
Atm

where the superscript m corresponds to one of the discrete stirring events. McDermott et
aL. (2005) show that, under simplifying assumptions, the ODT stirring can yield similar
scaling of SGS stresses with resolved strain to the model derived using the basic
Smagorinsky model, and its underlying assumptions. Earlier analysis by Kerstein (1992)
showed that the transport induced by turbulent stirring events can be interpreted in terms of
a turbulent diffusivity. Kerstein used his analysis to derive expressions for the eddy-size
distribution and the eddy rate frequency within the context of LEM and based on a
prescribed kinetic energy spectrum.

U(1 i Figure 2. Implementation of a triple
map on a segment in the ODT
profile. The triplet map is a
conservative rearrangement event

maps that consists of the replacement of
=>1 D profile on the selected segment

- - -by three identical copies compressed
to one-third of their original size,
with the middle copy inverted. The
triplet map results in the tripling of
gradients and interfaces within that
segment.

Another important implementation detail concerns the implementation of ODT-unresolved
contributions due to filtered advective and diffusive fluxes. The implementation of filtered
advective fluxes in the present work represents one of the more significant contributions of the
present effort.

4. General Comments



While an LES-ODT approach can be promoted for momentum closure, which constitutes
an integral part of the validation of the model in this research effort, the true advantage of
the approach is its potential to capture the statistics of processes that originate in the
subgrid scale. Concerns about capturing these statistics are common among many turbulent
mixing and turbulent combustion problems. The model has a number of attractive features:

(1) The LES-ODT approach is a statistical approach given the stochastic contributions
from ODT and its one-dimensional nature. Therefore, the predictions of LES-ODT
models are primarily of value at the LES time and length scales.

(2) The LES-ODT governing equations contain redundancies, which can be used to fine-
tune model constants or evaluate closure terms based on ODT of subgrid scale stresses
or fluxes or source terms. We denote this approach as a two-way coupling of the LES
and ODT solutions (Schmidt et al., 2003). The presence of redundancies also means
that potentially we can rely on one particular component of the model, say LES or
ODT, to resolve a given quantity. We denote this approach as one-way coupling. This
approach is adopted for the present validation study.

(3) The ODT governing equations are derived in physical space, albeit in ID. Physical
boundary conditions, such as walls or interfaces with other phases can be applied in a
more transparent way than particle-based (e.g. FDF approaches) or phase-space based
formulations.

(4) In contrast with LES-LEM, the LES-ODT model may be used to 'close' both
momentum and scalar terms in the LES-filtered equations and to implement a more
robust coupling between momentum and scalar transport equations. More importantly,
since ODT is a turbulence model, there is no implicit assumption about the mechanism
or associated statistics of the turbulence conditions used. For example, an ODT
implementation can adapt to transitions from an inertia-driven flow to a buoyancy-
driven flow, such as in jets.

(5) In contrast with phase-space models, such as the flamelet approach or the conditional
moment closure (CMC) model (Peters, 2000), there is no implicit assumption about the
combustion model, regime, or dominant chemistry required to reduce the parameter
space based on these models. The ability to capture physics without these restrictions is
an attribute that LES-ODT shares with FDF approaches as well as the LES-LEM
approach.

(6) The ODT governing equations couple contributions from molecular transport, chemical
source terms and advection within a single 1D domain. Therefore, the LES-ODT
formulation remains true to its original principle of coupling molecular and turbulent
transport processes along the entire range of scales. Moreover, mixing in the ODT
model is local in both physical and wave spaces, allowing for a more realistic
representation of transport and the kinetic energy cascade in turbulent flows. Turbulent
advection on the 1 D domains is implemented stochastically with mapping events, each
involving the application of a "triplet map" to a randomly selected segment (eddy).
Despite its simplicity, the triplet map was shown to reproduce traditional Kolmogorov
inertial and dissipative scaling, Batchelor's Prandtl number dependent passive-scalar
subrange scaling, and the Bolgiano-Obukhov scaling of buoyancy-driven scalar spectra
(Kerstein, 1999a, 1999b).



(7) With spatially and temporally resolved solutions of momentum and scalar variables,
variances and co-variances of joint velocity and scalars, as well as two-point statistics,
can be constructed based on ODT solutions.

Il1. NUMERICAL IMPLEMENTATION

We have outlined above a general framework for the formulation of an LES-ODT model
for turbulent combustion. In reality, additional equations may be swapped with the energy
and species equations to address other physics. We also have pointed out potential
redundancies in the governing equations that may yield different ways of coupling LES and
ODT solutions. In this section, we discuss implementation issues and address key
implementation details based on the LES-ODT model that is adopted for the present
validation. The numerical solution of the LES-ODT transport equations is obtained using a
finite-difference scheme for the LES-filtered equations and a hybrid finite-difference and
Monte-Carlo procedure for the ODT equations. The different contributions representing the
terms on the right-hand side of the ODT governing equations are treated as parallel
processes based on a split operator scheme. These processes include (1) reaction-diffusion
terms, (2) stochastic stirring events, and (3) advection terms. Additional processes
involving the collection of statistics also can be implemented within the context of the
ODT solutions.

The ODT solutions are implemented on an ensemble of ODT domains, or elements, that
are embedded in the LES domain. In their simplest form, the ODT elements are distributed
on an orthogonal lattice representing the principal components of a Cartesian coordinate
system (see Fig. 1). In a more general form, the ODT elements are allowed to be advected
with a characteristic velocity (such as the filtered velocity) and rotated by the velocity field
to assume arbitrary orientations with respect to the LES grid. Additional considerations for
the hybrid LES-ODT solutions involve the temporal and spatial coupling of these solutions.
Below we discuss in general terms the proposed approaches for the integration of the
various terms. In the validation section, we provide more specific implementation details
adopted for the validation study.

In the present model validation study, the LES-filtered momentum equations are resolved
using the standard Smagorinsky model for the SGS stresses. No scalar equations are
transported, and therefore, in the absence of heat release, there is no feedback coupling
from the ODT solutions to the LES solutions. There is, however, coupling that is carried
out to establish consistency between the momentum equations in LES and ODT. Moreover,
as shown below, the LES solution for the momentum equations is filtered inversely onto
the ODT solutions to implement the proposed advection scheme.

A. Molecular processes

Molecular processes in the ODT governing equations include (1) reaction, (2) diffusion
along the ODT elements' directions, and (3) diffusion along the directions normal to the
ODT elements. While the first and second contributions can be resolved exactly on the
ODT grid, the third contribution must be modeled. In principle, different strategies can be
adopted to model this contribution. These include:



1. A flame-normal approach in which ODT elements are aligned with the dominant
direction of scalar gradients, such that on average, these gradients are captured with a
1D description. These gradients may indicate the presence of a flame 'brush'.
However, within the context of LES, the direction of the gradients will evolve in
time; therefore, a flame-normal approach can be reasonably addressed primarily
through a Lagrangian description of ODT.

2. The use of the filtered solution of scalar gradients in the three principal directions.
However, important considerations of scalar boundedness must be addressed when
coupling LES-resolved terms on the LES time step and ODT solutions. Moreover,
diffusion is inherently coupled with reaction, and the introduction of filtered
contributions may significantly alter this coupling.

3. The representation of non-resolved diffusive contributions through an enhanced
diffusion in one dimension along the ODT elements. This may be achieved through a
local isotropic prescription of scalar gradients. This corresponds to an enhancement of
the rate of diffusion by a factor of 3. A possible refinement to this approach is to
identify an alternative factor based on the ratios of the LES-filtered diffusive fluxes or
scalar gradients. In the present validation study, we adopt the simpler approach. The
reaction-diffusion operators in the governing equations are modeled

as: (pau,i/t)MOL = 3 a/la{ u,/8ril), (paT/at)MOL = (1C,)aP/at +(3/1C) a4;laq _-(11cP) hkok,
k=I

and (payk /at)MOL =3J +,,1/r+ k. The superscript 'MOL' refers to the molecular

contribution to the governing equations. The other terms in the expressions for the
reaction-diffusion operators have the same meaning as described earlier.

The choice of the integration scheme for these operators may be largely dictated by the
stiffness and complexity of the chemical mechanism. Further splitting of the diffusion
and reaction terms may be computationally efficient as implemented in the study of
Echekki et al. (2001).

B. Stirring Processes

Stirring events are implemented as discrete events dictated by a sampling frequency for
stirring. During a stirring event an eddy size and location are sampled randomly out of the
available length scales and positions within the domain. Subject to rules of stirring, a
stirring event is implemented by locally implementing a triplet map on profiles of velocity
components and scalars covering the extent of the eddy. Stirring events are implemented
using the rules dictated by the recent formulation of ODT, the vector formulation (Kerstein
et al., 2001). The formulation includes the solution for a three-component velocity field on
the ID ODT elements along with any number of scalar transport equations. The
formulation, in particular, enables inter-component energy transfer based on the return-to-
isotropy concept; therefore, in contrast with the original ODT formulation (Kerstein, 1999),
stirring events involve the application of a triplet map and a redistribution of kinetic energy
among the three components of the velocity. A parameter, a, in the model regulates the
extent of the energy transfer, with a maximum value corresponding to a = 1. The
implementation of the triplet map may be limiting the upper range to which the LES filter
may be extended fundamentally.



The time sequence of stirring events, which are implemented on individual eddies, is
prescribed by an event rate distribution. This rate distribution is evaluated by associating a
characteristic length and time scale to the selected eddy. The time scale is analogous to an
eddy turnover time; and is therefore expressed in terms of the eddy size and characteristic
velocities (or kinetic energies), computed based on a weighted average on the eddy. The
primary ODT model constant, C, is of order unity and relates the actual rate distribution
and the theoretical rate distribution. An additional viscous penalty constant, cz, is used in
adjusting the characteristic kinetic energy in the eddy with the rate of dissipation associated
with that eddy. An additional model parameter is the maximum size of eddies, Lmx, which
is dictated by the Nyquist limit, the smallest eddy that can be represented on the LES grid.
Additional details of the implementation of stirring events are found in Kerstein et al.
(2001).

C. Advection

A principal innovation of the present study is the treatment of the filtered advection of
momentum and scalars in ODT, which are represented by the operators:
(Oui /at)ADV =-_W aui/laxj , (OT/at)ADV = -iij T/lax and (ayk/at)ADV =-ij aYk /&lX in the ODT
governing equations. The implementation of filtered advection represents a fundamental
challenge for the following reasons:

(1) Advective transport is a 3D process; thus, at least two directions are not resolved on the
ODT time scale or on the ODT 1D elements. A principal challenge is to represent
unresolved contributions to advection, at least statistically.

(2) Non-linear contributions from advection processes pose important constraints on scalar
boundedness. Scalar boundedness is an important problem in the solution of
combustion flows that is made critical by the presence of both ODT resolved and LES
resolved terms within the advection operator. Scalar boundedness problems also are
critical for problems involving the solution of both major and minor species of
combustion.

The representation of gradients and advective fluxes along the principal directions of
transport is a critical component of the present model. These fluxes may be constructed
exactly along "nodes" that represent the intersection in space of three or more ODT
domains. Along these nodes, the solution of the velocity and scalar equations are updated;
then, ODT solutions between these nodes are updated through a single component
advection along the corresponding ODT element. In a Cartesian lattice of ODT elements,
these nodes represent the intersection of three orthogonal ID domains. Below, we will
describe the implementation based on this Cartesian lattice configuration. The filtered
advection process as implemented as a separate process concurrently with reaction-
diffusion and stirring processes. The treatment of three-dimensional fluxes within ODT
solutions is implemented through a two-step process: (1) node advection, and (2) intra-node
relaxation:

* Node Advection: At the prescribed time step for filtered advection, the solution at each
node is evaluated based on gradients represented by the 3 ODT elements intersecting at
the node. This step is implemented as follows:



(a) The three components of the advective flux are evaluated through the separate
contributions from these ODT elements.

(b) These components added to represent the overall contribution to advection operators,- Wjau,/laxj , - iij/Olxj and -ijaklx

(c) The solution at the nodes is updated based on the combined fluxes and the advection
operators alone.

At the end of this process, the updated node solution is reflected in all contributing 3 ODT
elements. The governing principle for the proposed node advection strategy is to channel
advective fluxes through ODT nodes is a similar strategy to what has been adopted for
Lattice Gas (LG) and Lattice-Boltzmann (LB) methods. These two methods rely on the
description of macro-scale fluid transport in terms of discrete particles moving along a
lattice.

Intra-node Relaxation: At the end of the node advection step, the solution is updated
at the ODT nodes. The second step involves an update, or a relaxation, of the solution
between these nodes, while the solution at the nodes is fixed. This is achieved through
the integration of the solution in between the nodes using single-component advective
fluxes according to the following relations: (au,/1at) =-K M77, (aT/at) = -C ii,/ MalT/T

and (ay, lat) =-K j ay, lq/. In these relations, K is a relaxation coefficient, which governs

the rate at which the intra-node solution is updated to reflect changes at the nodes.
Because the LES-ODT approach is inherently a statistical approach, there exists a
reasonable range for the values of K that can still yield reasonable predictions of the
scalar and momentum statistics on the LES time scale. It is equally possible to
implement intra-node relaxation in terms of successive implementations (or cycling) a
number of times between each node advection event. Presently, the trade-offs between
enhancing the coefficient, K, or cycling intra-node advection has not been fully
investigated. The use of advection fluxes along the ODT elements manages the "flow"
of statistics from the nodes, which is largely governed by the rate of transport and
determines the relative contribution of the surrounding nodes.

The implementation of a flux-limiting scheme is an important aspect of the numerical
implementation of filtered advection for the above steps. In the validation study presented
below, we use a total variation diminishing (TVD) scheme with a flux limiter, based on the
"Superbee" limiter of Roe (Tannehill, 1997) to enforce scalar boundedness. Other
strategies to address higher order schemes or different constraints to the overall numerical
solution can be adopted as well (Oran and Boris, 2001).

D. Coupling of LES and ODT Solutions

The coupling of LES and ODT solutions is implemented both temporally and spatially. The
LES and ODT solutions are coupled at each LES time step as shown schematically in Fig.
3. The solution scheme involves an ODT integration of the various concurrent sub-steps,
for molecular processes, stirring, advection and statistics, up to a LES time-step. In
practice, a multi-step LES numerical procedure (e.g. predictor-corrector approach) may
lend itself more readily for coupling LES with ODT. Such a procedure may be provided to
refine variables that are transmitted from one solution approach to another. In Fig. 3, the



LES time-steps is shown shifted by half an ODT integral time step to accurately represent
these variables within the two schemes.

During the temporal integration of the two solutions, statistics are transmitted from one
solution scheme to another. For ODT, the LES-filtered velocity field, U, may be evaluated
from the LES solution of the momentum equations. For LES, a number of variables may be
obtained from ODT, including closure for the mass density, 5, SGS stresses and fluxes,

(ipij- u~7~, (i4 ),) and (ui - ), or filtered sources terms, and

Cp k=I

0bk. Diffusive fluxes or diffusion coefficients may also be evaluated through filtering of the
ODT solutions. In reality, the degree of coupling may be dependent on the actual transport
equations solved in the LES filtered equations, the type of closure needed in these
equations, and the assumptions of the model. For example, in the present validation study,
only the LES momentum equations are solved. The LES and ODT solutions are made
consistent by adjusting the ODT velocity field at the end of an integral time step. This
adjustment is achieved by adding a 'correction' to the ODT velocity components, such that
residual terms are maintained, and the filtered contribution corresponds to the LES-filtered
velocity field, ":

Ui,ODT -*ui,LES +" -/ODT'whereu =u -- (13)
iLE iDT'i,ODT = :,ODT - .ODT

Note that the velocity components ýjODT and f.LES correspond to ith component of the

ODT filtered velocity components based on the ODT solutions and the LES-resolved
velocity components based on the LES governing equations, respectively. The adjustment
of ODT velocity field enforces the consistency of the velocity fields between LES and
ODT. Because the adjustment is made at regular LES time-step intervals, the pressure
correction term is not explicitly implemented in the node-advection scheme discussed
above. Instead, pressure correction is implemented implicitly within the velocity
adjustment in Eq. (13).
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Figure 3. Coupling of LES and ODT.

IV. APPLICATION: NON-HOMOGENEOUS AUTOIGNITION



Using the formulation presented above, we simulate autoignition in non-homogeneous
mixtures. An attempt to capture this complex physics is a challenge for state-of-the-art
models in turbulent combustion. In a non-homogeneous mixture, the rate of chemistry
competes with the rates of turbulent mixing and diffusion, resulting in different
autoignition regimes. The details of this competition eventually determine the volumetric
rates of heat release, the fate of the reacting mixture and the evolution of the reactive
scalars statistics. During this process, the dominant chemical reactions, the mode of
combustion (e.g. premixed, non-premixed) or the combustion regime (e.g. flamelet,
distributed reaction) may evolve in time. Autoignition in non-homogeneous mixture is
initiated at discrete autoignition sites where the local conditions for the onset of chemistry
are favorable (e.g. low dissipation rate, favorable temperature and mixture composition).
More importantly, these sites can be initially small, and far below the resolution of the LES
grid.

A. DNS Simulation of Non-Homogeneous Autoignition

To evaluate the LES-ODT model predictions, Direct Numerical Simulations (DNS) of the
same problem are implemented. The initial mixture is prescribed as a random field of
mixture strengths separating "islands" of fuel and oxidizer, where the oxidizer is heated
relative to the fuel. The main flow assumptions used here include ideal gas behavior,
constant density, constant transport coefficients, and negligible radiation, Soret, and Dufour
effects. Although the formulation below can be easily extended to variable density
conditions, we have made the constant density assumption to establish the same evolution
of turbulence conditions in the cases considered for the same initial flow conditions. With a
variable-density assumption, the filtered density field may be evaluated using ODT
solutions and provided for closure of the LES governing equations. We also assume that all
species have the same constant mass diffusivity. The resulting non-dimensional governing
equations are:

"* Continuity

au- 0, (14)
axi

"* Momentum
___ au, lap a2 u.

a+ I.. +vax2  (15)
at -' a

" Temperature

aT aT V a2 T-+ u.-= +Q&3, (16)
at + axj Pr ax

"* Species (fuel and oxidizer mass fractions)
a YF0 O ayF'0  V a2YFo

at + axj PrLe ax C



In the above equations, the subscripts "F" and "0" refer to the fuel and the oxidizer,
respectively; while the other symbols and subscripts carry their usual meaning. The non-
dimensional parameters, Pr and Le, correspond to the Prandtl number and the Lewis
number for all species, including the fuel (F), the oxidizer (0) and the product (P),
respectively. The kinematic viscosity, v, in a normalized form can be written as an inverse
of a Reynolds number, Re = 1/v. The value of this Reynolds number is based on the
magnitude of the kinematic viscosity and the characteristic length and velocity scales used
to normalize the various physical quantities. As written in the governing equations, the
Lewis number is the same for all species, and, therefore, it measures the relative rates of
heat diffusion to mass diffusion for these species.

The reaction rate of the fuel and oxidizer and the rate of heat release are prescribed by the
single-step, second-order, irreversible reaction of the fuel, F, with the oxidizer, 0:

F+0 -+ P. (18)

The rate of progress of reaction is expressed in Arrhenius form as follows:

W=Bp 2 yFYo expa(- E (19)

where the individual rates of production and consumption of products and reactants are
related as follows: i =-o = -co. In this expression, F, 0 and P and associated subscripts

refer to the fuel, oxidizer, and product respectively. The rates constant parameters, B and
E,, correspond to the pre-exponential frequency factor and the activation energy,
respectively. The constant, R,, is the universal gas constant. We further assume that all
species have the same molecular weight, W, such that at stoichiometric conditions, the fuel
and oxidizer mass fractions are 0.5. At any time of the computation, the mixture fraction, Z,
is prescribed as follows:

z (10+ - 0o). (20)

The mixture fraction is used to evaluate conditional statistics of reactive scalars based on
this quantity. The low Mach number approximation is used to solve the transport equations.
The DNS code is based on the formulation by Mason (2000). The same code has been
generalized to compute the LES equations in LES-ODT, and is coupled with the ODT
solver. Non-staggered uniform grids are used in the formulation. A third-order Runge-
Kutta method is used to integrate the system of equations in time. A fully consistent
fractional-step method is used for the solution of the momentum equation. The pressure in
the momentum equation is solved using the Poisson's equation. Linearly implicit variation
of third-order Runge-Kutta scheme is used to integrate the energy and the species
equations. Spatial derivatives are computed using the fifth-order explicit finite-difference
schemes.

B. LES-ODT Simulation of Non-Homogeneous Autoignition

1. Governing Equations

The governing equations are:

* LES continuity



=fj =0, (21)

* LES momentum (i =1, 2, 3)

-' I + V+) a2i' (22)
at 'ax, pax, x

The turbulent viscosity, VT, is expressed based on the Smagorinsky model as:

vT =(csA)2(2sys) (23)

where Sy is the filtered rate of strain, which may be evaluated from the LES-resolved

solution of the velocity vector. The constant Cs is the Smagorinsky constant, and the length
scale, A, is the characteristic filter width. In the present computations, it is taken as the grid
size, which is uniform and is the same in each direction. The ODT governing equations are:

"* ODT Momentum (i = 1, 2, 3)

au. = a3 v •! +Q, - i, (24)

at a+ '2 ax-

" ODT Energy

aT V v2 + _r- 8T (25)
=3- 2+Q Q Ijat Pr aq O)TJ Xi

" ODT Species (fuel and oxidizer)

=YF o 3 FO _@ +Q&f .YF,o (26)
at Pr Le ar2 7 'F"O aX,

In the above equations, the terms inside the brackets '()' on the right-hand side represent
the deterministic reaction-diffusion operators. The second terms on the right-hand side
represent the stochastic stirring events; and the last terms represent filtered advection.

2. Initial and Boundary Conditions

The initial field in the DNS simulation is prescribed with a von Karman-Pao spectrum
(Hinze, 1975) for the mixture fraction fluctuation correlation function. The mixture fraction
represents a normalized measure of the mixture composition, such that it is zero on the
oxidizer side of the mixture and unity on its fuel side. Fig. 4 shows isosurfaces of the initial
mixture fraction field indicating the spatial distribution of the mixture strength from lean to
rich conditions. The same form of the spectrum is also used to prescribe the initial kinetic
energy spectrum. The DNS initial conditions are prescribed consistently with the LES-
ODT computation. The initial field velocity and scalar fields from DNS are interpolated to
the ODT elements using tri-linear interpolation. The initial LES flow field is obtained by
filtering the ODT flow field using the box filter. Periodic boundary conditions are imposed
in all three directions for both DNS and LES-ODT simulations. Periodic boundary



conditions along ODT elements are also implemented for stirring events extending beyond
one element physical boundary.

3. Run Conditions and Model Parameters

The following parameters are prescribed for all DNS and LES-ODT cases considered, Pr =

0.7, Re = 200, Da = 200, and fj = 2. The heat release parameter, a0 , which is the ratio of
the temperature difference between products and reactants to the products temperature at
stoichiometric conditions, is chosen as 0.75. This value indicates a temperature ratio
between reactants and products of 4 at stoichiometric conditions. The Lewis numbers are
set differently for the different cases considered.

The ODT model constants a, C, and Cz are chosen to be consistent with the values

adopted by Kerstein et al. (2001). They correspond to a value of a = 2/3, C = 3.78, and C,
= 0.04. No additional fine-tuning of these parameters is implemented here. A future
extension of the present effort is to explore optimum static values for these parameters or
methods to determine them dynamically. The model constant L,,. may be prescribed as a
factor of the LES grid, A; and we have adopted a value of the ratio, LmJA = 2; this is a
reasonable choice, as it corresponds approximately to the factor associated with Nyquist
limit. The value of Lmax is found to yield reasonable results in the recent near-wall LES-
ODT simulations by Schmidt et al. (2003). The coefficient K" for intra-node relaxation is set
to unity. Additional enhancements of this coefficients or the implementation of cycling
between node advection events only yields marginal improvements on the LES-ODT
reactive scalars' statistics.

The simulations are based on four different conditions that represent two distinct turbulent
flow conditions and different Lewis number values at the higher turbulence conditions. The
different conditions are chosen to highlight the roles of turbulent and molecular transport
on the transient evolution of the autoignition process. The base case corresponds to the
lower turbulence conditions at Taylor scale Reynolds number of 100 and a unity Lewis
number for all species considered. The turbulence intensity for this case normalized by the
characteristic velocity is 0.74. The other conditions correspond to a Taylor scale of 405,
and a corresponding normalized turbulence intensity of 3.0. Three different Lewis numbers
are used for this high turbulence condition, including 0.5, 1 and 2. Despite these
differences, the different cases considered share the following initial conditions:

(1) The initial mixture fraction distribution is identical to identify the role of transport in
mixing and chemistry.

(2) Both low-turbulence and high-turbulence conditions have the same structure in both
physical and spectral spaces. The high-turbulence initial velocity field corresponds
point-by-point on the computational domain to a factor of 3.0/0.74 the corresponding
value for the low-turbulence case. This choice of initialization enables the identification
of the role of turbulence intensity.

The computational domain size is 4.2 in each direction. The corresponding DNS resolution
is 1293. Two different resolutions are computed with LES. They are denoted as case A and
case B in the simulations, and correspond to a resolution 93 and 173, respectively. Figure 5
shows a profile of the kinetic energy spectrum as a function of the wave number based on
the DNS initial velocity profiles of both the high-turbulence and the low-turbulence cases



considered. The spectrum, which is initialized with a von Karman-Pao profile, shows the
position of the wave numbers corresponding to resolutions 9 and 17 grid points relative to
the position of peak kinetic energy. The linear range (in the log plot) corresponds to the
inertial range portion of the spectrum. Cases A and B fall within and at the limits of this
inertial range, respectively.

The ODT resolution in a given direction is identical to that of DNS, which is 129 grid
points. The layout of ODT elements is such they are aligned with the 173 grid (case B).
Therefore, the same distribution is adopted for both cases A and B, even though a layout of
ODT elements in case A on the LES grid is found to be sufficient for the prediction of
statistics of reactive scalars. In Case A, the ODT elements are placed on the LES grids as
well as in between the LES grids. The number of ODT elements is specified in order to
obtain sufficient statistics. In the present study, the choice of the number of ODT elements
is also dictated by our interest in isolating the effects of the LES grid size.

4. Computational Cost

With the current ODT elements layout, the number of ODT grid points may be expressed
as: 3x129x172 or 111,843 grid points. Therefore, it only scales linearly with the DNS
resolution in one direction; while, in DNS it scales with the cubic power of the DNS
resolution in one direction. The factor of 3 represents the fact that three different directions
for ODT domains are adopted within the lattice configuration. In contrast, the coarse-grid
LES resolution is 729 and 4,913 grid points for cases A and B, respectively. Therefore, the
bulk of the computational cost is in the ODT elements' solutions. Nonetheless, the total
saving in total computational cells is, therefore, of the order of a factor of 20 times than that
of DNS. This is a significant saving given that a lower number of gradients for advective
and diffusive transport are also evaluated with ODT.

V. RESULTS

Comparisons between LES-ODT and DNS results are based on both volume-averaged
statistics and conditional statistics of thermo-chemical scalars. Volume-averaged statistics
correspond to volume-averaged moments at a given instant in time of the simulation. These
averages provide measures for the global evolution of the mixture, the progress of reaction
and the evolution of key reactive scalars in the mixture. Conditional statistics are based on
moments (primarily means and RMS values) at a given time of the simulation conditioned
on the value of the mixture fraction. Conditional statistics provide further insight into
finite-rate chemistry effects. For an acceptable outcome of the simulations, both sets of
statistics must be consistent qualitatively and to a large extent quantitatively to statistics
obtained from DNS.

A. General Observations

Fig. 6 shows the evolution of isosurfaces of filtered values of the reaction progress
variable, c, at 0.5 based on the high turbulence conditions at unity Lewis number. The
evolution of the filtered progress variable marks the growth of autoignition kernels.
Initially (not shown), no autoignition kernels are present. At t=0.2, the earliest autoignition
kernels form, while more kernels form at a later time. The difference between early and late
kernels is attributed primarily to the local rate of dissipation and the mixture conditions,
which correspond to lean mixture conditions. The size of the nascent kernels is well below



the LES grid, and an elaborate statistical model is needed to predict conditions of
autoignition at this stage. During intermediate stages of the autoignition process (t = 0.8
and later), the expanding kernels begin to interact, and the initially closed kernels now form
mangled autoignition fronts, which continue to burn through richer mixtures.
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Figure 4. Initial mixture fraction field of the DNS solution. The same field is used to
'interpolate' the initial ODT solutions at t 0.

B. Volume-Averaged Statistics
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Figure 6. Isocontours of the progress variable (reacting case) at 0.5 for ODT at different
times.



Fig. 7 shows the temporal evolution of the volume-averaged mean and RMS values of
temperature, fuel mass fraction, and oxidizer mass fraction, respectively, between LES-
ODT and DNS for the unity Lewis number case at both low and high turbulence
conditions. The figure shows that both qualitative and quantitative trends of the mean
values of these reactive species are well predicted by the LES-ODT approach; although an
overall delay in the rates of completion of combustion can be observed for the high-
turbulence case in the LES-ODT statistics. We have found, although we have not shown
here, that this delay may be attributed entirely to events in LES-ODT of high dissipation
that contributed to a delay in the auto-ignition process.

The most obvious differences between LES-ODT and DNS statistics are found in the RMS
profiles at high-turbulence conditions. The inherent mechanism for these differences is
related to the presence of ignition delay in high-dissipation kernels. Peaks in RMS, which
are delayed for the high-turbulence LES-ODT statistics, reflect primarily the chemical
activity and approximately coincide with peaks of mean reaction (not shown). Fuel mass
fraction and temperature RMS are very similar. Because the evolution of the mixture
fraction during the bulk of the combustion process occurs primarily in fuel lean conditions,
the fuel represents the deficient species in the mixture, and rates of chemistry and
associated changes in temperature also reflect fluctuations in this deficient species. The
oxidizer RMS profiles are fundamentally different as shown at the bottom of Fig. 7, and are
characterized by an initial rapid decay, then a second intermediate peak. In many respects,
higher order statistics, such as the RMS, are expected to place the more stringent
requirements on a model.

C. Conditional Statistics

Figs. 7a-7d show conditional mean profiles of temperature vs. the mixture fraction at
different stages of evolution of the autoignition process for the low-turbulence Lewis
number case (Fig. 7a), and the high-turbulence cases of Lewis number of 0.5 (Fig. 7b), 1.0
(Fig. 7c), and 2.0 (Fig. 7d). Also shown are comparisons of the two different LES grid
resolutions corresponding to resolution in the inertial and outside the initial range of the
original turbulence spectrum. All figures show a steady decay in the range of the mixture
fraction represented in the profiles as a function of time. This decay is observed in both
LES-ODT and DNS-based statistics, and it may be attributed to the process of mixing,
which eventually homogenizes the mixture. At later times of the mixture evolution,
statistics eventually represent a narrow range around the stoichiometric mixture fraction,
0.5, which also corresponds to the condition of a homogeneous mixture at the end of the
mixing process.

The profiles also show the evolution from a pure mixing linear profile with a negative slope
indicating the initial preheating condition on the oxidizer side of the mixture. Increases
beyond the initial peak value at Z equal to 0 represent the onset of autoignition. These local
peaks appear first at low mixture fractions indicating the onset of autoignition at fuel-lean
mixtures. These peaks progressively move in both mixture fraction and physical spaces to
richer conditions by lean premixed flame propagation. How far this peak will go into
richer mixtures depends on the competing process of mixing.

The autoignition process is completed earlier for the high-turbulence case. Otherwise, a
comparison between the evolution of the conditional mean profiles for temperature



between the low-turbulence and the high-turbulence cases indicates similar trends, albeit at
a faster rate for the high-turbulence simulation. These trends are reproduced very well by
the LES-ODT results. Perhaps an even more interesting comparison can be carried out
between the various Lewis number cases in the high-turbulence computations. Figs. 7b-7c
show that the case of Lewis number equal to 0.5 exhibits higher intermediate temperatures,
followed by the unity Lewis number and the case of Lewis number equal to 2. These clear
qualitative trends are reproduced equally in both the LES-ODT and DNS results. These
trends are attributed to the fact that a lower Lewis number indicates a slower diffusion of
"heat" relative to species. Therefore, an autoignition kernel is more shielded thermally
from dissipation than species. In more practical mixtures and considering important
differential (different diffusion rates between species) and preferential (different diffusion
rates between species and enthalpy) diffusion effects, a non-unity Lewis number can result
in either the loss of radicals or heat from these autoignition kernels. Considering the strong
non-linear Arrhenius dependence on temperature compared to reactants, shielding of
nascent kernels against heat loss would tend to increase the peak temperature in these
kernels.

Figs. 8a-8d show conditional RMS profiles of temperature vs. the mixture fraction at
different stages of evolution of the autoignition process for the low-turbulence Lewis
number case (Fig. 8a), and the high-turbulence cases of Lewis number of 0.5 (Fig. 8b), 1.0
(Fig. 8c), and 2 (Fig. 8d). Also shown are comparisons of the two LES grid resolutions
corresponding to resolution in the inertial and outside the initial range of the original
turbulence spectrum. The range of the mixture fraction representing conditional statistics
shrinks in time, reflecting the mixing process towards a homogeneous mixture. The figure
shows very good predictions of the LES-ODT approach of temperature RMS at different
times of the autoignition process and subsequent kernel growth. The predictions for higher
turbulence conditions are very reasonable. The location of the peak temperature RMS is
well predicted; but, some differences in magnitude of these peaks can be observed at early
(at t = 0.4) and later stages (t > 1.6) of the autoignition process, while very good predictions
are obtained otherwise. RMS profiles reflect primarily chemical activity. The figures show
the propagation of ignition in phase and physical spaces from lean towards richer
conditions. For the low turbulence case, peaks in temperature RMS are seen on the rich
side of the mixture, as shown at times 2.4 and 3.6 in Fig. 8a. Because of the higher rates of
mixing in the high-turbulence conditions, these peaks do not go beyond the stoichiometric
condition of mixture fraction 0.5. As these peaks reach this stoichiometric condition, they
eventually decay to zero when the combustion process is completed.

The higher temperatures associated with lower Lewis numbers at the high-turbulence
conditions also are reflected in higher RMS values for the temperature at early stages of the
autoignition process. This trend, however, is reversed at later times, as shown in profiles at
t = 2.4 and 2.8. The same trends are exhibited by the LES-ODT and DNS statistics. These
trends reflect the subtle coupling between the diffusion of "heat" and mass at non-unity
Lewis numbers. While at early stages a Lewis number below unity helps to shield nascent
autoignition kernels against thermal dissipation, the same process limits the transfer (or the
preheat) of richer mixtures as the "propagation" of autoignition kernels evolve to these
mixtures. Accordingly, reaction rates at rich mixtures are lower for lower Lewis numbers.
This trend is illustrated clearly in the evolution of the conditional mean profiles of the
reaction rate, ao, for the same conditions features in Figs. 7 and 8, as shown in Figs. 9a-9d.



The profiles exhibit similar trends to those of the RMS profiles of temperature. Peak values
of these conditional means are higher for the higher turbulence conditions at the same
Lewis number of unity. The profiles show that these peaks evolve from lean conditions
towards richer conditions. Perhaps the most subtle distinction between the low-turbulence
and the high-turbulence conditions can be found at the later stages of the autoignition
process (t = 6.0 for low turbulence, and t = 2.8 for high-turbulence). A single peak of the
reaction rate remains for the low-turbulence conditions after the main mode of burning has
swept through fuel-rich conditions. This peak reflects burning in the diffusion flame mode
in contrast to the dominant peaks of burning on the lean and rich sides of the mixture. This
peak has a significantly lower magnitude than the premixed flame burning mode, which is
expected because of the fundamental burning mode differences between diffusion-based
and premixed burning. This peak is not present in profiles of high-turbulence conditions.
The representation of both premixed and non-premixed modes in both LES-ODT and DNS
is an important indicator of the LES-ODT model fidelity in reproducing the salient physics
of autoignition in non-homogeneous mixtures.

A comparison among the profiles at high turbulence conditions for the various Lewis
numbers shows that the lower Lewis number condition exhibits higher peaks initially, and
then lower peaks as the combustion process propagates towards richer mixtures. At these
conditions, the higher Lewis number case exhibits higher mean reaction rates as shown at
the later times of 2.0, 2.4 and 2.8. The difference among the Lewis number cases reflects
the strong sensitivity of the reaction rate to temperature and the role of the Lewis number in
thermal dissipation in the nascent autoignition kernels.

V. Conclusions

A new framework for large-eddy simulation of turbulent combustion was proposed. The
framework is based on coupling LES solvers with low-dimensional stochastic models in
general and have been presented for the One-Dimensional Turbulence (ODT) model. The
principal advantage of the ODT formulation is that terms in the governing equations of
LES for the transport of momentum, energy and scalars can be represented in 1D through a
hybrid scheme of deterministic and stochastic contributions. Another important advantage
of the ODT formulation is that processes of molecular transport, chemistry and turbulent
transport are closely coupled to address a broad class of problems in turbulent combustion.
The resulting governing equations of ODT are designed to be consistent with their filtered
counterparts Additional advantages of the proposed framework have been outlined in the
body of the report.

A second important implementation involve the formulation of a LES-ODT model within
the proposed framework designed to solve for scalars, while the momentum equations are
handled with a "standard" LES model; therefore, the formulation targets closure for physics
that has been the scope of turbulent combustion models for more than 30 years, including
the modeling of non-linear reaction source terms and the prediction of reactive scalar
statistics. The formulation was implemented in a canonical problem that features physics
relevant to some of the outstanding questions in turbulent combustion models. The problem
is based on non-homogeneous autoignition, where ignition occurs at discrete ignition sites
well below the LES grid resolution. Conditions of ignition are based on local conditions of
dissipation and mixture, which too are not resolved on the LES grid. A consistent
agreement with DNS at varying turbulence conditions and in the presence of preferential



diffusion effects is found. The validation provided a demonstration of the capability of the

LES-ODT model and the proposed framework in general. Future extensions to the model

are needed to establish it as a viable tool for predicting the behavior of turbulent reacting

flows in practice.
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DNS at different times for the low turbulence case with Le = 1.
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